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TODO

The key Uniswap formula is the invariant relationship . What this means that
agents trading with the pool (as opposed to agents providing liquidity to the pool) can
freely choose their location on this line when trading with the pool. To give an example: if
the current holdings of the pool are  and  (in their own arbitrary number of tokens
units) and someone chooses to provide  tokens of type  to the pool then in return
they’ll get  tokens of type  where ,  and .

What we are really interested is the marginal pool trading price  which we consider as
function of , and which is defined as

The minus sign appears because whenever tokens of type  are contributed to the pool
then tokens of type  are withdrawn and vice versa. The signs of  and  are from the
perspective of the pool, ie a positive number means the token is contributed, and a
negative number means it is withdrawn.

First a number of easy to prove identities that can come helpful along the way. First the
percentage change relationship

What is the color of Uniswap bleed?
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and

Note the respective indices — the  term is backwards. Resolving  in the equation
above yields

which we can rewrite as

If we define the pool price  for  then we have

where we used . The second term is the slippage term and it
essentially says that the marginal trading price is the current pool price adjusted for the
relative size of the trade: if you want to trade 1% of the pool’s assets then the price gets
1% worse.

Hypothesis. In this example the invariant function is . The hypothesis is
that the exact form of the invariant function does not matter, as long as it is strictly
decreasing and it asymptotically meets the two axes.

Justification. The asymptotics are important as the pool can never be allowed to run out
of tokens. This means that even for very large  the  must be less than the amount of
tokens available . Similarly, one can not buy more tokens  than are available in the
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pool . The function must be decreasing because otherwise at least at some points it
would be possible with withdraw tokens of both types without breaking the invariant.

Note that for small trades the slippage term goes to unity, so for small trades we find

ie for small trades the marginal price equals the pool price.

So what happens if we connect this pool to a wider market? Let’s assume that at time 
there is (at least) one market participant who has access to a firm price  meaning that
he can exchange  vs  in any quantity and direction at a a price ratio of . This trader
will trade with the pool whenever she can make a profit. The only way there is no profit to
the made is if the marginal price for small trades (ie ignoring slippage)  equals the
market price , ie we have

In other words, the arbitrage trader will trade with the pool until the above condition
holds.

As a reminder,  is the number of tokens of type  in the pool. For more clarity of
the exposure let’s assume that  is the value of  in some numeraire, for example USD.
So  is the dollar value of the  tokens in the pool. We know that the relative price 

 by our definition of  (the unit of  is “Y per X”), therefore  is
the value of tokens of type  in the pool. From the arbitrage condition above we know
that , and therefore we have

Within an active market
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In other words, when the pool is fully arbitraged against a deep external market then
the monetary value of both pool constituents  and  is the same.

Now we are looking what happens if markets move. Let’s assume we start at time  with
a market price  and an arbitraged pool, ie 

The first thing to note is that whoever provides liquidity to the pool is exposed to the
combined market risk of  and , ie if that liquidity provider accounts in another
numeraire (and the notation  implies this) then if both  and  increase / decrease
by 10% then the pool value increases / decreases by the same value.

The more interesting part however is when we have relative price movements between 
and . To study this we are placing ourselves in the numeraire , ie we will have 
throughout and all volatility will be caused by the price changes of , ie .

So let’s assume that the market jumps instantaneously from  to  and that the pool is
still at its  arbitraged state. As a reminder, total pool value before the jump was 
(because both parts of the pool have equal value, and the value of 1  is 1 by choice of
numeraire) and after the jump it is

This intuitively makes sense:  is measured in “Y per X” so if  goes up this means the
value of  goes down, and as the pool is long  the value goes down. The opposite
holds as well - if  decreases the value of  and therefore of the pool goes up. This is
however not the end of it: remember the pool is always willing to trade on its invariant
line  and as the pool is currently out of kilter it is profitable doing so.

The calculations are not hard but a bit confusing, so we’ll go through step by step. As a
reminder we have (1)  from the invariant, and (2a)  and (2b) 
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 from the arbitrage conditions. Multiplying (1) with (2b) yields

We now write  and we can transform the above equation to

and, if we take the square root

Using (1) we get the equivalent equation for 

To simplify the formulas we temporarily use  as the square root term and we
compute

Using the identity  and resubstituting  we find

where for the last identity we simply use  and move the  into the square
root.

Conclusion. What we have seen here is that when the pool has been arbitraged at the
price point  and prices move to  then the pool allows the arbitrageur to trade at a
price , ie the (geometric) average of  and , whilst she is at the same time able
to trade in the market at a price of . The arbitrage ratio is therefore



To give a numerical example, if  is 10% then that ratio is 94.8 meaning that she
can make a risk free profit of 5.2% on the amount she can trade with the pool.

We have seen above that the pool executes its trades suboptimally: when coming from

price  and being a price  then the pool allows execution at some average of  and 
 (in this case the geometric average; for other invariant functions this will differ, but it

always will be an average).

One might think that this is just a suboptimal but still winning strategy rather than an
outright loss, but this is not quite right as we are concerned with the market making
profits of the pool here. Pool investors have a long exposure to both of the assets in the
pool, and in order to cancel this they will have to go short outside of the pool. However,
after the above market move the execution outside the pool they will be at , and if
inside the pool they execute at the average  they’ll loose money after every
adjustment.

As we calculated above, the relative price loss is

where we used .

That relative price loss needs to be applied to a scale to give the value loss, and the
scale in this case is the traded value  which is

We multiply those two terms together and, observing that  and  only differ by a term 
 which can be ignored in our Taylor expansion, we find that the bleed  after a

price move  is 

Pool bleed and negative Gamma



We now want to examine what happens under frequent rebalancing, ie if the arbitrageurs
jump in whenever there is a chance to do so. This is a realistic assumption in the
presence of multiple, non-colluding arbitrageurs. This is essentially prisoners’ dilemma:
whilst everyone would gain by waiting until  is large (remember the gain is quadratic in 

) any individual will be better off by just taking profits if and when they arise.

We first assume that our market process is random but smooth, meaning that 
when we make our time steps  smaller and smaller. As to the latter, we consider a
macroscopic time interval  and we divide it into  equal pieces so that .
Frequent rebalancing is in this case expressed by the limit .

In this limit our  gets smaller. More precisely it scales with . The value change is
quadratic in  and therefore scales with . The number of pieces increases with 
. So overvall in the smooth case our aggregate bleed is proportional to

Conclusion. In case of a smooth price process the arbitrage “bleed” (ie the money lost
to arbitrageurs) goes to zero with instantaneous rebalancing.

Now we assume that our price process is a Brownian motion. As a reminder, a Brownian
motion is defined as

where  is a standard Brownian motion with  and . This latter
relationship is often slightly sloppily denoted as  and we find that for  the
equivalent

which can easily be “proven” by using the definition above and ignoring all terms that are

Smooth random process
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higher order than  (ie only the term  survives).

This is really the defining property of a Brownian motion, and it is what distinguishes it
from a smooth random process: in the former, quadratic changes are in  and
therefore disappear when going granular (ie ; see above). A Brownian motion is
much more jerky and rugged, to the extent that  is of order  (and deterministic)
which means it has macroscopic effects even in the granularity limit .

To repeat the calculation above, let’s assume that  is a logarithmic Brownian motion
with volatility parameter  like in the Black Scholes model, ie . The
aggregate bleed to arbitrageurs in this case is

where as above  and the last relation follows in the limit 

A jump process is a process where most of the time nothing happens, but from time to
time there are violent (technically: discontinuous) motions, aka “jumps”. For the most
common jump process, in every small time interval  the probability of a jump occurring
is , and for non-overlapping time periods the jumps are statistically independent. In
discrete time those can be modelled with a Bernoulli distribution (at every time interval 
there is a typically very small probability  of a jump, and the jumps are all independent)
and in continous time this converges against the Poisson distribution and process. The
mathematics of this is well known, but outside of the scope of this paper as it is not very
interesting here.

It is worth however at this stage to compare Brownian motion and jump processes as
those are, in some respect, diametrically opposite. The Brownian motion is very jittery
and violent at a small scale. Regardless of how closely one looks, the direction always
abruptly changes and the trajectory never has a tangent. However, the trajectory is
continuous (no jumps) and most of the movements are very very small. The larger the
scale the less important the random effects. A Brownian motion is, on most trajectories,
dominated by the drift term. Also a squared Brownian motion is deterministic ( )
because most of the small distance jittery moves are “absorbed” by the flat region
around the origin of the square function.

Jump process on the other hand are nice, smooth and calm most of the time — in fact in
the most simple cases simply nothing happens at all. However, when something

Jump process



happens, oh boy! Whilst a Brownian motion is continuous everywhere a jump process is
discontinuous at the jump points. Details now depend the exact form of the jump
parameters. In the easiest case a jump is just a multiplicative or additive constant.
However, it can be any distribution one wants as it is somewhat mix-and-match: there is
one dynamics for when a jump happens, and there is another one for what happens in
case of a jump.

Whilst we do not want to look at the time dynamics here it is interesting to analyse what
happens in a jump. We remember from above that the bleed associated with a jump 
is 

ie the bleed is proportional to the square of the percentage move. Note a key difference
to Brownian motion is that in the latter case the bleed was deterministic and continuous
whilst in the case of a jump process it is stochastic and occasional.

In any case, what we do here is do look at the expected bleed

We find that the expected bleed is closely related to the variance of the returns and equal
to it if  is a Martingale, ie has zero drift.

For reasonably nice jump behaviour this variance exists, in which case we are by an large
back to our Brownian motion case provided we are looking at it from a long enough
timescale. In the long run, central limit theorem will ensure that the combined jumps
converge to something like a Gaussian distribution.

However, there are many fat-tailed distributions out there whose variance is infinity. What
this means is that, in the long run, there will be a jump that will wipe out the pool.

In this paper we have looked at the Uniswap protocol which is an automated market
making protocol currently implemented on the Ethereum blockchain. This protocol is
based on so-called “liquidity pools” which are smart contracts containing two different
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tokens, and who are willing to trade with everyone who comes along according to a pre-
determined formula.

This formula is based on the invariant  where  are the respective token
amounts (in their own native units) of the tokens  held in the contract, and  is a
constant. The key property of the Uniswap contract is that the invariant function is its
indifference function as well - the contract will engage into any trades  vs  that
respect the invariant (for the avoidance of doubt this ignores fees the contract might
charge).

The first result we found that in presence of a deep and liquid market that is exchanging 
 vs  at a price  arbitrageurs will make sure that the monetary value of the  tokens

in the contract equals the monetary value of the  tokens as for any other pool
composition the price the pool offers allows an arbitrage opportunity. We did not prove
this, but the arbitrage result is a generic result that holds for many different invariant
functions (not all lead to equal monetary value howoever. In fact, our hypothesis is that
every function that is (a) strictly decreasing, and (b) has the x and y axis’ as asymptotics
is valid as invariant.

The second result we found was that a pool that is currently arbitraged at a price  will
offer to trade at a price  if the market price moves to . Note that this is an
arbitrage opportunity for others as they can trade in the market at the price . This
arbitrage opportunity is by design as it ensures that the pool will be in its correct state
after each move. Coming back to our hypothesis, the result with the geometric average is
not generic. However, in the generic case the price offered by the pool will be an average
of  and  and the arbitrage persists.

We then made a key observation that is generally overlooked in the discussion about the
benefits of contributing ones assets to a Uniswap pool. It is important to separate the
gains and losses from the underlying position from the benefits of the arbitrage strategy.
To take a step back: if someone is providing liquidity to a Uniswap pool they are forcibly
long the two pool assets and therefore are exposed to the volatility in the value of those
assets. In order to understand the benefits of contributing to a pool we need to strip out
the effect of that long position and need to look at the pool effect only.

In order to do this adjustment we assume that the liquidity provider run an equivalent
short strategy outside the pool. More precisely, they start out with a short position of
equal monetary size at the current price  and after every market movement they adjust
their position to be again at equal monetary size at the then prevailing price . This last
sentence in italics is key: to maintain their market neutral position they execute the
trades on the short side at the then prevailing market price ; however, the pool trades



with the market at a price that is an average of  which is by construction and
design more favourable than .

The above means that at every finite adjustment that fully hedged strategy suffers a
value bleed. This is a well known phenomenon in finance, and specifically option pricing
theory, which is known as ”negative Gamma” where the position bleeds value at every
adjustment of the hedge.

We found that the value bleed is quadratic in , meaning that a twice bigger move leads
to four times the bleed. This is important as it exaggerates the impact of big moves, and
it diminishes the impact of small moves. On the face of it this suggest that whilst it exists
for finite moves we can make the bleed arbitrarily small by changing the adjustment

frequency (and we argued that in a competitive markets arbitrageurs would not be able
to collude and wait until the moves are bigger to reap more value).

We looked at this proposition that the bleed disappears as long as the position is
adjusted frequently enough for three distinct cases: a smooth random process, a
Brownian motion, and a jump process. We found that our intuition held only in the case
of the smooth random process, which unfortunately is not a realistic description of
market dynamics.

In case of a Brownian motion market dynamics (the same that is being used in the
Black Scholes option pricing universe) we found that the bleed of the Uniswap pool is
proportional to  where  is the volatility of returns, and  is the accrual period. We
also found that in case of the Brownian motion that bleed is deterministic, just like the
bleed on a constant-Gamma position in a Black Scholes world is deterministic.

We also looked at the jump process market dynamics, which in some respect is the
opposite of a Brownian dynamics: for the Brownian motion the main uncertainty is very
small movements over a very short timescale, but over a longer scale the uncertainty is
contained. For the jump process on the other hand the uncertainty is restricted to
specific moments in time — most of the time the process is smooth and nothing
happens. However, when things are happening they are violent. At best there is a finite
discontinuity in the process, but nothing prevents the jumps from being extremely violent
and fat tailed. We found that if the jump distribution has infinite variance (as is usually the
case for fat tailed distributions) then the expected bleed is infinite.

As we said above, the difference between a jump distribution and a Brownian motion is
that in the former the bleed is stochastic. This means that for a certain period of time we
can expect to see non-catastrophic jumps that, within measurement boundaries, can be
interpreted of being as the benign finite-variance type. However, at one point we can



expect a massive jump (and/or a series thereof) that completely wipes out the value to
the liquidity providers.

We have shown that by design Uniswap liquidity providers suffer a bleed whenever the
pool is adjusted after market movements. This bleed is a necessary component for
Uniswap to function as it attracts the arbitrage traders who ultimately keep the pool up to
date. For most liquidity providers this bleed is hidden within the volatility of their systemic
long position. However, when looking at it on a market neutral basis with all the token
risk hedged out the bleed is a net cost to the liquidity providers.

A priori this does not have to be a problem: this bleed is very similar to that suffered by

option traders, and for which the option premium is the compensation. Just like in the
option trading case it is important that the bleed is covered by the market making fees.

This however leads to a number of important conclusions.

Firstly, market making fees are not all profit as they need to be adjusted for bleed.

Secondly, as the bleed is proportional to the square of the volatility of the price
process , a change in that volatility will lead to a change in profitability for the
market makers unless the fees are adjusted dynamically

Finally, in the presence of fat-tailed jumps, notably jumps with infinite variance, there
is no level of market making fee that can compensate, and liquidity providers will
ultimately face ruin.

1. https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/12
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